Nonlinear Dynamics of Moving Curves and Surfaces: Applications to Physical Systems
نویسندگان
چکیده
The subject of moving curves (and surfaces) in three dimensional space (3-D) is a fascinating topic not only because it represents typical nonlinear dynamical systems in classical mechanics, but also finds important applications in a variety of physical problems in different disciplines. Making use of the underlying geometry, one can very often relate the associated evolution equations to many interesting nonlinear evolution equations, including soliton possessing nonlinear dynamical systems. Typical examples include dynamics of filament vortices in ordinary and superfluids, spin systems, phases in classical optics, various systems encountered in physics of soft matter, etc. Such interrelations between geometric evolution and physical systems have yielded considerable insight into the underlying dynamics. We present a succinct tutorial analysis of these developments in this article, and indicate further directions. We also point out how evolution
منابع مشابه
Nonlinear Dynamics of Moving Curves and Surfaces: Application to Physical Systems
The subject of moving curves (and surfaces) in three dimensional space (3-D) is a fascinating topic not only because it represents typical nonlinear dynamical systems in classical mechanics, but also finds important applications in a variety of physical problems in different disciplines. Making use of the underlying geometry, one can very often relate the associated evolution equations to many ...
متن کاملDefinition of General Operator Space and The s-gap Metric for Measuring Robust Stability of Control Systems with Nonlinear Dynamics
In the recent decades, metrics have been introduced as mathematical tools to determine the robust stability of the closed loop control systems. However, the metrics drawback is their limited applications in the closed loop control systems with nonlinear dynamics. As a solution in the literature, applying the metric theories to the linearized models is suggested. In this paper, we show that usin...
متن کاملNonlinear Dynamics of the Rotational Slender Axially Moving String with Simply Supported Conditions
In this research, dynamic analysis of the rotational slender axially moving string is investigated. String assumed as Euler Bernoulli beam. The axial motion of the string, gyroscopic force and mass eccentricity were considered in the study. Equations of motion are derived using Hamilton’s principle, resulting in two partial differential equations for the transverse motions. The equations are ch...
متن کاملDynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory
In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...
متن کاملDynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method
The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 15 شماره
صفحات -
تاریخ انتشار 2005